
Andrew A. Chien
Vice President of Research

Intel Corporation

Symposium on
Principles and Practice of Parallel Programming

March 16, 2007

Pervasive Parallel ComputingPervasive Parallel Computing
An Historic Opportunity for Innovation in

 Programming and Architecture

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

2

© Intel Corporation

OutlineOutline

•

Moore’s Law and Many Cores

•

What Applications Need

•

Programming Approaches

•

Looking Ahead

•

… 4 Big Opportunities in ManyCore…

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

3

© Intel Corporation

Moore’s Law and Many Cores (Terascale)Moore’s Law and Many Cores (Terascale)

107

105

103

109

FORECASTFORECAST Source: Intel

32 Billion
Transistors

Moore’s Law
Alive and Well

© Intel Corporation

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

5

© Intel Corporation

Single Core Performance is Stagnant Single Core Performance is Stagnant

Time

0.01

1.01

2.01

3.01

4.01

Ja
n-

85
Ja

n -
86

Ja
n-

87
Ja

n-
88

Ja
n-

89
Ja

n-
90

Ja
n-

91
Ja

n -
92

Ja
n-

93
Ja

n-
94

Ja
n -

95
Ja

n-
96

Ja
n-

97
Ja

n-
98

Ja
n-

99
Ja

n-
00

Ja
n-

01
Ja

n -
02

Ja
n-

03
Ja

n -
04

Ja
n-

05
Ja

n-
06

Ja
n -

07
Ja

n-
08

Ja
n-

09

Fr
eq

ue
nc

y
(G

H
z)

Frequency limited by leakage and power. Transistor counts
continue to increase.

Multi-core performance:
P ~ Area

Transistor Count (area)
P

e
rf

o
rm

a
n

ce

Gap driving us
to Multi-core

Single Stream
Performance
P ~ √Area

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

6

© Intel Corporation

Translating Transistors to
Performance
Translating Transistors to
Performance

•

Si Process
•

Clock Rate
•

Micro-architecture (ILP)
•

Caches
•

Thread Parallelism

•

Si Process
•

Clock Rate
•

Micro-architecture (ILP)
•

Caches
•

Thread Parallelism

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

7

© Intel Corporation

N
um

be
r o

f C
or

es

2005 2006 20072003

Parallel Cores in Widespread
and Increasing Use
Parallel Cores in Widespread
and Increasing Use

Desktop

Server

2004 2008

TBD - Intel (8)

Azul Vega1 (24)

Azul Vega2 (48)

SledgeHammer Nocona(1)
Conroe (2) Woodcrest (2)

Clovertown (4) Kentsfield (4)

Niagara II (8)Cell (1+7)

0%

25%

50%

75%

100%

Q3’05 Q4’05 Q1’06 Q2’06 Q3’06 Q4’06
0%

25%

50%

75%

100%

Q3’05 Q4’05 Q1’06 Q2’06 Q3’06 Q4’06

SINGLESINGLE--CORE*CORE*

MULTIMULTI--CORECORE

MultiMulti--core is already Mainstreamcore is already Mainstream
““Intel to ship roughly 5Intel to ship roughly 5--6 million of quad6 million of quad--core desktop core desktop
processors in 2007processors in 2007””

““Sun released its first NiagaraSun released its first Niagara--based servers a year ago based servers a year ago
and currently sells more than $100 million of the and currently sells more than $100 million of the
systems per quartersystems per quarter””

““We expect We expect Clovertown

Clovertown to represent to represent
approximately 28% of Intel servers in 1Q, approximately 28% of Intel servers in 1Q,
and 36% in 2Q (2007)and 36% in 2Q (2007)””

““MultiMulti--Core chips shipments prevailed over SingleCore chips shipments prevailed over Single--Core Core
offeringsofferings……

over 50% of Intelover 50% of Intel’’s chips were Multis chips were Multi--CoreCore””

[Stacy Smith, Intel] [Stacy Smith, Intel]

“…“…the company was on schedule the company was on schedule ……for global shipment for global shipment
of 6 million PS3 machines by March 31 (2007)of 6 million PS3 machines by March 31 (2007)””

[[NanakoNanako

KatoKato, , Sony spokeswoman]Sony spokeswoman]

•

With exponentials, the first couple of doublings aren’t too
bad, but when the numbers get large, the doublings are huge!

““Intel's two new 50Intel's two new 50--watt [quad core] processors, watt [quad core] processors,

the Xeon L5320 and the L5310, offer clock speeds of the Xeon L5320 and the L5310, offer clock speeds of

1.86GHz and 1.6GHz, respectively. Both chips also1.86GHz and 1.6GHz, respectively. Both chips also

have a total of 8MB of Level 2 cache and use ahave a total of 8MB of Level 2 cache and use a

1066MHz FSB.1066MHz FSB.””

-- Scott Ferguson, EScott Ferguson, E--weekweek

March 9, 2007March 9, 2007

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

10

© Intel Corporation

The Obvious

Where Will Manycore Chips be Used?Where Will Manycore Chips be Used?

The SurpriseThe Edge

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

11

© Intel Corporation

Terascale Chip Research QuestionsTerascale Chip Research Questions

•

Cores
–

How many? What size?
–

Homogenous, Heterogeneous
–

Programmable, Configurable,
Fixed-function

•

Chip-level
–

Interconnect: Topology,
Bandwidth

–

Coordination
–

Management
•

Memory Hierarchy
–

of levels, sharing, inclusion
–

Bandwidth, novel Technology
–

Integration/Packaging

•

I/O Bandwidth
–

Silicon-based photonics
–

Terabit links

Source: CTWatchQuarterly, Feb 2007

Manycore Chips (circa. 2012)?

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

12

© Intel Corporation

•

Broad range of systems (servers, desktops,
laptops, MIDs, smart phones,…) converging to…
–

a single framework with parallelism and a selection of
CPU’s and specialized elements

–

energy efficiency and performance are core drivers across
the board

•

=> Parallelism moves from niches to widespread
pervasive use and permeates all

kinds of

programming
•

=> Parallel software can target a very

broad range

of platforms if standard models of application
architecture, expression, and implementation are
established.

Opportunity #1: Highly Portable Parallel
Software
Opportunity #1: Highly Portable Parallel
Software

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

13

© Intel Corporation

But, how will we program all of that
parallelism?

But, how will we program all of that
parallelism?

What do applications need?What do applications need?

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

14

© Intel Corporation

Key Software Development ChallengesKey Software Development Challenges

•

Productivity
•

Portability
•

Performance, Performance Robustness
•

Debugging/Test
•

Security
•

Time to market

⇒ Software Development is Hard!
⇒ Parallelism is critical for performance, but must be achieved

in conjunction with all of these requirements…

“Forward scalability”: the application continues to get faster on
succeeding generations of hardware platforms.

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

15

© Intel Corporation

A Parallel Approach that requires…
–

Lower programming productivity
–

Major changes in software architecture
–

Significant changes in code structure everywhere
–

Complicates debugging and test
–

Requires maintenance of multiple versions
–

Requires deployment diversity (high cost of support)
–

Introduces non-modular interactions
>

Major coordinated changes across code
>

Increases correctness dependences
–

…

Parallel Programming Non-startersParallel Programming Non-starters

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

16

© Intel Corporation

•

Parallel Programming Effort ≤

Sequential Programming Effort
•

PP Approaches that don’t increase programming complexity
–

Productivity, Modularity, Interactions, Performance Tuning, etc.

•

PP Approaches that have “forward scalability”
–

To increasing levels of parallelism without reprogramming or
retuning

•

PP Implementation techniques that enable efficient, high
performance, robust parallel performance
–

enable programming at a high level
–

enable performance robustness and portability

•

Architecture/Hardware Innovations which Support Parallel
Programming

•

The Parallel Programming community can address these
opportunities!

Wanted: Breakthrough Innovations in
Parallel Programming
Wanted: Breakthrough Innovations in
Parallel Programming

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

17

© Intel Corporation

•

Single core growth and aggressive frequency
scaling are weakening competitors with other types
of architecture innovation

•

=> Innovations which support functionality –
 programmability, performance robustness,

observability, security, etc. are increasingly
possible

•

=> Don’t ask for small incremental changes, be
bold and ask for LARGE changes…

that make a

LARGE difference

Opportunity #2: Major Architectural
Support for Programmability
Opportunity #2: Major Architectural
Support for Programmability

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

18

© Intel Corporation

Mid 60Mid 60’’ss
To Mid 80To Mid 80’’ss

Mid 80Mid 80’’s s
To Mid 200xTo Mid 200x

ManyCoreManyCore
EraEra

Programming SupportProgramming Support
ParallelismParallelism
System IntegrationSystem Integration

GhzGhz ScalingScaling
Issue ScalingIssue Scaling

Language SupportLanguage Support
IntegrationIntegration

New Golden Age of Architectural Support
for Programming?
New Golden Age of Architectural Support
for Programming?

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

19

© Intel Corporation

Programming ApproachesProgramming Approaches

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

20

© Intel Corporation

•

Exposing the Parallelism
•

Managing it for Correctness (and Performance)

•

Tuning to Deliver Performance

•

Approaches
–

Threading
–

Data Parallel
–

Transactional
–

Declarative / Functional

Challenges and ApproachesChallenges and Approaches

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

21

© Intel Corporation

Examples: pThreads, Java, C#, Java, OpenMP

Ex. Matrix Multiply (OpenMP)

#pragma

omp

parallel do private(…) shared(…) setenv

OMP NUM THREADS <nthreads>
DO K2 = 1, M, B
DO J2 = 1, M, B
DO I = 1, M DO I = 1, M
DO K = 1, M DO K1 = K2, MIN(K2+B-1,M)
DO J = 1, M DO J1 = J2, MIN(J2+B-1,M)

Z(J,I) = Z(J,I) + X(K,I) * Y(J,K) Z(J1,I) = Z(J1,I) + X(K1,I) * Y(J1,K1)

Threads and Shared MemoryThreads and Shared Memory

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

22

© Intel Corporation

1. Who does the management of parallelism and locality?
Threads –

Programmer; OpenMP

–

mixed, some runtime help

2. How does the programmer express parallelism?
Programmers describe potential parallelism
Can express thread interaction and synchronization.

3. Is the parallelism composable?
Requires global reanalysis by programmers

4. How is performance achieved?
Programmer tunes sequential sections.
OpenMP

--

Increasing complex annotation.

Threads and Shared MemoryThreads and Shared Memory

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

23

© Intel Corporation

Examples: C*, NESL, Ct, HPF, UPC, Data Parallel C

* =
Ex. Ct matrix vector product

CCtVEC<F64>
SparseMatrixVectorProductCSC(CCtVEC<F64> A,
CCtVEC<I32> rind, CCtVEC<I32> cols,
CCtVEC<F64> v) {

CCtVEC<F64> expv, product, result;

expv

= ctDistribute(v,cols);

product = A*expv;

result = ctMultiReduceSum(product,rind);

return result;

}

Data Parallel ProgrammingData Parallel Programming

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

24

© Intel Corporation

1. Who does the management of parallelism and locality?
Programmers manage alignment (+ data distribution) which is
basis for locality.

System manages degree of parallelism.

2. How does the programmer express parallelism?
Operations on Parallel collections, typically arrays or sets

3. Is the parallelism composable?
Yes for functional/declarative version.
No, if model uses underlying shared memory (overwrites or
overlaps).

4. How is performance achieved?
Manual grain size management, data alignment.

Data Parallel ProgrammingData Parallel Programming

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

25

© Intel Corporation

Examples: x10, Chapel, T Cilk, TM libraries

Ex. Matrix multiply, Transactional Memory

DO K2 = 1, M, B
DO J2 = 1, M, B
DO I = 1, M DO I = 1, M
CALL BEGIN_TRANSACTION(I)
DO K = 1, M DO K1 = K2, MIN(K2+B-1,M)
DO J = 1, M DO J1 = J2, MIN(J2+B-1,M)

Z(J,I) = Z(J,I) + X(K,I) * Y(J,K) Z(J1,I) = Z(J1,I) + X(K1,I) *

Y(J1,K1)
CALL END_TRANSACTION(I)

Transactional MemoryTransactional Memory

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

26

© Intel Corporation

1. Who does the management of parallelism and locality?
Programmer, with some runtime monitoring support

2. How does the programmer express parallelism?
Programmers, with threads

3. Is the parallelism composable?
Yes, in simple cases. Nesting and irreversible operations tricky.

4. How is performance achieved?
Programmer tunes for few aborts.
Programmer tunes sequential thread sections.

Transactional MemoryTransactional Memory

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

27

© Intel Corporation

Examples: SQL, ML, Haskell
Ex. Matrix Multiply in Haskell

matMult :: (Ix a, Ix b, Ix c, Num d) =>
Array (a,b) d -> Array (b,c) d -> Array (a,c) d

matMult x y = array resultBounds
[((i,j), sum [x!(i,k) * y!(k,j) | k <- range (lj,uj)])

| i <- range (li,ui),
j <- range (lj',uj')]

where ((li,lj),(ui,uj)) = bounds x
((li',lj'),(ui',uj')) = bounds y
resultBounds

| (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))
| otherwise = error "matMult: incompatible bounds"

Declarative/Functional ProgrammingDeclarative/Functional Programming

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

28

© Intel Corporation

1. Who does the management of parallelism and locality?
Automatic by runtime system.

2. How does the programmer express parallelism?
Implicitly specified by programmers.

3. Is the parallelism composable?
Yes, no implied state sharing

4. How is performance achieved?
Rewriting algorithms, but difficult to control.
Data distributions in some cases.

Declarative/Functional ProgrammingDeclarative/Functional Programming

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

29

© Intel Corporation

•

Less locality sensitive; Efficient sharing
•

Runtime techniques more effective for dynamic,
irregular data and programs

•

Can we do less tuning? And program at a higher
level?

Parameter SMP Tera-scale Improvement

On-die
Bandwidth

12 GB/s ~1.2 TB/s ~100X

On-die
Latency

400 cycles 20 cycles ~20X

Huge Opportunity:
Manycore != SMP on Die
Huge Opportunity:
Manycore != SMP on Die

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

30

© Intel Corporation

•

Single chip integration enables closer coupling (cores, caches)
and innovation in intercore

coordination

•

“High Performance without detailed control”
–

High Productivity, High Performance
–

Flexible, modular software

•

=> Robust performance and “forward scalability”
•

=> Architecture support for high level programming
approaches –

optimization and dynamic runtime techniques
–

Isolation and modularity
>

Transactions are just one approach

–

Scheduling and synchronization
–

<your invention here>

Opportunity #3: High Performance, High
Level Programming Approaches
Opportunity #3: High Performance, High
Level Programming Approaches

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

31

© Intel Corporation

Opportunity #4: Use Parallelism to Add
New Kinds of Capability and Value
Opportunity #4: Use Parallelism to Add
New Kinds of Capability and Value

•

Additional core and computational capability will be available
on-chip, can be exploited at modest additional cost

•

=> Deploy it to improve the application, software, user,
experience

•

Traditional: Application level –

user interface
–

Visual computing, multi-sensor, large data analysis, machine
learning, activity inference

•

Interesting:
–

Security –

network and platform monitoring
–

Software –

health monitoring, invariants, debugging and lifecycle
monitoring

–

Dynamic tuning and customization

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

32

© Intel Corporation

•

Programs misbehave too often: bugs,
security attacks, hardware faults.

•

Runtime tools are too slow to be truly
effective.

•

The challenges of debugging will increase
with multi-core systems.

Research Activities
•

Utilize additional performance of multi-core
systems for debugging.

•

Automatic detection of-

and recovery from-

software errors. Inspect program’s dynamic
behavior on a core and use program history
to understand failures.

•

Efficient dynamic program inspection &
rewind via a log that is captured by the
hardware, managed by the system and
exposed to software

Intel Research Pittsburgh, CMU

R
e
-e

x
e
cu

te
?

E
x
a
m

in
e
 h

is
to

ry

ti
m

e

R
o

ll
b

a
ck

Using Parallelism to Increase Software
Robustness (LBA)
Using Parallelism to Increase Software
Robustness (LBA)

Less State,
Larger Grain

Minimal
State,

Aggregate
Statistics

Time
distant past recent history

Recover

yAnalysis
Detection

Full State,
Fine Grain

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

33

© Intel Corporation

Looking ForwardLooking Forward

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

34

© Intel Corporation

TodayToday
ManycoreManycore
EraEra

100%100%

??%??%

of Applications Growing Rapidly# of Applications Growing Rapidly

Are All Applications Parallel Applications?Are All Applications Parallel Applications?

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

35

© Intel Corporation

•

For Education
–

Parallelism front and center
–

An integral part of early introduction and experience with
programming

–

An integral part of early algorithms and theory
–

An integral part of software architecture and engineering

•

=> but this really should happen much sooner!

Parallelism Implications for Computing
in 2012
Parallelism Implications for Computing
in 2012

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

36

© Intel Corporation

•

For Software and Hardware
–

Parallelism in all computing systems
–

Dramatic new capabilities enabled by performance and
performance / unit power

–

Established and varied software models for portable
parallelism
>

Broad parallel software portability across a wide variety of
ManyCore

devices
>

Major advances in implementation technologies: tools,
languages, environments, runtime

–

Architecture support for Parallel Software and other
capabilities

–

Does HPC becomes an integrated niche of the larger
ecosystem?

Parallelism Implications for Computing
in 2012
Parallelism Implications for Computing
in 2012

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

37

© Intel Corporation

•

Dramatic change and Opportunity around Terascale
–

Moore’s law is about parallelism
–

But, Parallelism w/ much closer coupling and higher bandwidth
–

Greater opportunity for integrated parallel support

•

Historic Opportunities
–

#1: Highly-portable Parallel Software –

servers –

small
mobiles

–

#2: Major Architecture Support for Programmability
–

#3: High-performance, high-level Parallel Programming
–

#4: Parallelism for new kinds of capability and value

•

The Parallel Programming community is the one to
address these opportunities!

SummarySummary

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

38

© Intel Corporation

Questions?Questions?

Pervasive Parallel Computing
“An historic opportunity for innovation in programming and architecture”

39

© Intel Corporation

Copyright ©

Intel Corporation. *Other names and brands may be claimed as The property of others. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any

form or by any means, electronic, mechanical, photocopying, recording, or
otherwise or used for any public Purpose under any circumstance,

without the express written consent and permission of Intel Corporation.

	Pervasive Parallel Computing
	Outline
	Moore’s Law and Many Cores (Terascale)
	Slide Number 4
	Single Core Performance is Stagnant �
	Translating Transistors to Performance
	Slide Number 7
	Multi-core is already Mainstream
	Slide Number 9
	Where Will Manycore Chips be Used?
	Terascale Chip Research Questions
	Slide Number 12
	But, how will we program all of that parallelism?��
	Key Software Development Challenges
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Programming Approaches
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Opportunity #4: Use Parallelism to Add New Kinds of Capability and Value
	Using Parallelism to Increase Software Robustness (LBA)�
	Looking Forward
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Questions?
	Slide Number 39

